Reading List

(MO)RDM Reading List

You may want to prioritize the articles in red.

Core/Concepts

  • Ackoff, R. A. (1979). “The Future of Operational Research is Past.” The Journal of the Operational Research Society 30(2): 93-104.
  • Churchman, C. W. (1967). “Wicked problems. Guest editorial.” Management Science 14(4): B141-B142.
  • Lempert, R. J. (2019). Robust Decision Making (RDM). In V. A. W. J. Marchau, W. E. Walker, P. J. T. M. Bloemen, & S. W. Popper (Eds.), Decision Making under Deep Uncertainty: From Theory to Practice (pp. 23–51). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05252-2_2
  • Bankes, Steve. “Exploratory Modeling for Policy Analysis.” Operations Research 41, no. 3 (June 1, 1993): 435–49. https://doi.org/10.1287/opre.41.3.435
  • Ellsberg, Daniel. “Risk, Ambiguity, and the Savage Axioms.” The Quarterly Journal of Economics 75, no. 4 (November 1961): 643. https://doi.org/10.2307/1884324
  • Anderies, J. M., Rodriguez, A. A., Janssen, M. A., & Cifdaloz, O. (2007). Panaceas, uncertainty, and the robust control framework in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15194–15199. https://doi.org/10.1073/pnas.0702655104
  • Herman, J. D., Reed, P. M., Zeff, H. B., & Characklis, G. W. (2015). How should robustness be defined for water systems planning under change?. Journal of Water Resources Planning and Management, 141(10), 04015012.
  • Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71.
  • McPhail, C., Maier, H. R., Kwakkel, J. H., Giuliani, M., Castelletti, A., & Westra, S. (2018). Robustness metrics: How are they calculated, when should they be used and why do they give different results?. Earth’s Future, 6(2), 169-191.
  • Kwakkel Jan H., Walker Warren E., & Haasnoot Marjolijn. (2016). Coping with the Wickedness of Public Policy Problems: Approaches for Decision Making under Deep Uncertainty. Journal of Water Resources Planning and Management, 142(3), 01816001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000626
  • Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169. https://doi.org/10.1007/bf01405730
  • Keller, K., Helgeson, C., & Srikrishnan, V. (2021). Climate risk management. Annual Review of Earth and Planetary Sciences, 49, 95-116.
  • Woodruff, M. J., Reed, P. M., & Simpson, T. W. (2013). Many objective visual analytics: rethinking the design of complex engineered systems. Structural and Multidisciplinary Optimization, 48(1), 201–219. https://doi.org/10.1007/s00158-013-0891-z

Techniques/Examples

  • Hadjimichael, A., & Gold, D. (2020). Rhodium: Python Library for Many-Objective Robust Decision Making and Exploratory Modeling. Journal of. Retrieved from https://openresearchsoftware.metajnl.com/articles/10.5334/jors.293/print/
  • Kwakkel - Environmental Modelling & Software, J. H., & 2017. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Elsevier Oceanography Series, 96, 239–250. https://doi.org/10.1016/j.envsoft.2017.06.054
  • Hadka, D., & Reed, P. (2013). Borg: an auto-adaptive many-objective evolutionary computing framework. Evolutionary Computation, 21(2), 231–259. https://doi.org/10.1162/EVCO_a_00075
  • Garner, G. G., & Keller, K. (2018). Using direct policy search to identify robust strategies in adapting to uncertain sea-level rise and storm surge. Environmental Modelling & Software, 107, 96–104. https://doi.org/10.1016/j.envsoft.2018.05.006
  • Lempert, R. J., Schlesinger, M. E., & Bankes, S. C. (1996). When we don’t know the costs or the benefits: Adaptive strategies for abating climate change. Climatic Change, 33(2), 235-274.
  • Bertoni Federica, Giuliani Matteo, & Castelletti Andrea. (2020). Integrated Design of Dam Size and Operations via Reinforcement Learning. Journal of Water Resources Planning and Management, 146(4), 04020010. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001182
  • Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476–3486. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/wrcr.20295
  • Marangoni, G., Lamontagne, J. R., Quinn, J. D., Reed, P. M., & Keller, K. (2021). Adaptive mitigation strategies hedge against extreme climate futures. Climatic Change, in review(3-4). https://doi.org/10.1007/s10584-021-03132-x
  • Quinn, J. D., Reed, P. M., & Keller, K. (2017). Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points. Environmental Modelling & Software, 92, 125–141. https://doi.org/10.1016/j.envsoft.2017.02.017
  • Rosenstein, M. T., & Barto, A. G. (2001). Robot weightlifting by direct policy search. IJCAI: Proceedings of the Conference / Sponsored by the International Joint Conferences on Artificial Intelligence. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.5890&rep=rep1&type=pdf
  • Wong, T. E., & Keller, K. (2017). Deep Uncertainty Surrounding Coastal Flood Risk Projections: A Case Study for New Orleans. Earth’s Future, 5(10), 1015–1026. https://doi.org/10.1002/2017EF000607
  • Zaniolo, M., Giuliani, M., & Castelletti, A. (2021). Policy Representation Learning for multiobjective reservoir policy design with different objective dynamics. Water Resources Research. https://doi.org/10.1029/2020wr029329
  • Zarekarizi, M., Srikrishnan, V., & Keller, K. (2020). Neglecting Uncertainties Biases House-Elevation Decisions to Manage Riverine Flood Risks. Nature Communications. https://doi.org/10.1038/s41467-020-19188-9

Uncertainty and Risk Communication

Other Lists

Good Contribution Opportunity!

These lists are saved on google docs that only lab members have access to. Porting these over to the manual is a great first contribution opportunity for lab members who want practice collaborating on GitHub and opening a pull request!